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Abstract

This paper presents a novel framework to project 3D
points through curved mirrors to an image device. The
problem solved is the search for the reflection point for an
arbitrary vision system with a quadric shaped mirror. The
main advantage claimed for the framework presented is its
computer efficiency while providing better accuracy since
the search for the reflection point is made in a parameter-
ized curve that is function of a single unknown. The alterna-
tive solvers are the classical Snell Law and the Fermat Prin-
ciple that, as proved in experiments, present a much slower
convergence than the new method since they have a multidi-
mensional search space rather than a unidimensional one.
This new method can be used to speed up calibration of non-
central catadioptric systems based on reprojection error.It
can also be used for rendering purposes since it enhances
the performance of the projection of points through mirrors
while enhancing its accuracy, whether the mirror is part
of the vision system (catadioptric camera) or if it is only
a specular surface in the scene that reflects light in arbi-
trary directions. Another application of this framework is
for illumination purposes, providing a faster way to com-
pute reflected light direction or for the computation of the
direction of the light source. Experiments in performance
evaluation show the usefulness of the method presented.

1. Introduction

The projection through a specular surface is a matter of
interest in several fields: computer vision, computer graph-
ics, robotics and optics, amongst others.

Wide fields of view are extremely useful for applications
such as surveillance and tracking in computer vision but
also for rendering of graphics. For that purpose the direc-
tions of the light rays have to be changed in such a way as to
guarantee that most of the scene can be imaged by a single
sensor.

Figure 1. Reflection points of a regular grid on a spherical mirror.

Thus, changing the direction of light rays has been used
in several applications and in particular for imaging sys-
tems. One of the fields that can benefit from it is panoramic
imaging. Systems that use mirrors and cameras are called
catadioptric. Amongst all catadioptric systems, those which
use rotationally symmetric mirrors and in particular those
whose mirrors are quadrics are probably the most used.

It has been shown by Nayar and Baker [1] that for
quadric mirror catadioptric systems, the central projection
can be obtained only for a particular position of the camera
optical center, usually the focus of the quadric. However,
for the general case and when this constraint is relaxed, the
projection is noncentral which implies that the light rays do
not intersect each other at an effective single viewpoint.

Noncentral vision systems thus have, in general, no pro-
jection model, that is, a closed form expression relating 3D
world points to its corresponding pixels. However, there is
extensive studies that relates a pixel with its viewing direc-
tion [11].

The existence of such a projection model is very impor-
tant for rendering of scenes projected by general mirrors
and also in scenes where there are specular surfaces whose
reflected rays are imaged by the viewing camera - images
of mirrors (despite the type of camera used). Actually the
common vision systems used in rendering of images are
central ones, thus reducing the freedom to project an arbi-
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trary vision system or where the accuracy is relaxed to allow
for fast projections through specular surfaces.

The problem we are interested in is how to find the re-
flection point where the light traveling from an arbitrary
3D point is reflected to another arbitrary point by a gen-
eral curved mirror. This mapping between the 3D points
and the image 2D points is the projection model searched
for. Goncalves and Araujo have also partially addressed this
problem [5].

The principles of physics are then used to understand
and formulate the projection model. There are two prin-
ciples that describe the reflection process. On one hand, the
Snell Law states that the reflection point is the surface point
whose normal vector is the bisector of the incident and re-
flected light rays. It also states that this normal vector to the
surface is within the plane defined by the optical center, the
point to be projected and the reflection point (see [7]).

On the other hand, by the laws of the Optical Geom-
etry, it is known that the reflection point is the one that
makes the light path to be the quickest one. This princi-
ple is called Fermat Principle and its first formulation is
dated from 1657, based on the ancient variational principle
by Hero of Alexandria (somewhere between 150 BC and
250 AD) - see [7]. Since these distances are small and no
perturbation happens in the space-time, the quickest path is
also the shortest one and so the total path can be minimized
to achieve the reflection point.

Both Snell Law and Fermat principle are sufficient, each
oneper si, to find the reflection point. The problem is that
the constraints are not explicit in the image coordinates and
to solve them it is necessary to solve a multidimensional
nonlinear system of equations. The dimension of the prob-
lem depends on the formulation. This problem is not diffi-
cult to solve since the expressions are well behaved for the
majority of the vision systems but it is slow and computa-
tionally intense.

On the other hand, the framework we present to project
3D points to image through arbitrary quadric mirrors is fast
and extremely accurate providing the parameterization of a
curve where the reflection point is. Since this curve is ex-
pressed as function of only one unknown, the search prob-
lem is simpler in one or two orders of magnitude than those
usually used: the classical Snell Law and Fermat Principle.

Recently Roger et al. [12] and Estalella et al. [4] have
presented two different methods to compute the reflections
of points through curved mirrors expressed by clouds of
points or meshes. These works are not compared at this
stage with our framework since they don’t provide exact so-
lutions to the projection of 3D points to image.

Our framework can additionally be extended to other
types of mirrors rather than quadric surfaces since in gen-
eral quadric shapes can well approximate almost all types of
smooth shapes. Particularly, we intend to extend this frame-

work to non parametric mirror surfaces in future advances.

2. Problem Statement

In this section we present some notation conventions and
mathematical results used throughout this paper.

Homogeneous coordinates are used and points are ex-

pressed asX =
[

x1 x2 x3 x4

]T
. The corresponding

cartesian coordinate are given byx =
[

x y z
]T

, where
x = x1/x4, y = x2/x4 andz = x3/x4. Quadric surfaces
are expressed by a4 × 4 symmetric matrixQ. A point X
belongs to a quadric surfaceQ if it respects the equation
XTQX = 0.

The next proposition concerning the coordinates of a
plane is proved:

Proposition 1 Plane coordinates defined by three non
collinear points can be expressed as a linear equation in
the coordinates of one of the points.

Proof: Planes are defined by three points

U =
[

u1 u2 u3 u4

]T
, V =

[

v1 v2 v3 v4

]T

and W =
[

w1 w2 w3 w4

]T
(generating points).

We search the formulation of the plane coefficients as
a linear combination of one of its generating points.
Consider a planeΠ and define an auxiliary matrix
MΠ =

[

X U V W
]

composed by those three points

and a generic pointX =
[

x1 x2 x3 x4

]T
.

As stated by [6], sinceX must be a linear combi-
nation of the other three points in order to belong to
the planeΠ, the determinant of matrixMΠ must be
zero. This gives us the expression of the plane in terms
of the minorsDijk of matrix MΠ. It yields Π =
[

D234 −D134 D124 −D123

]T
.

After rearranging the terms, the equation can the rewrit-
ten in the formΠ = MW, where the matrixM is symmet-
ric. This equation is linear onW. Matrix M is then given
by:

M =

2

6

6

4

0 u3v4 − u4v3 −u2v4 + u4v2 u2v3 − u3v2
−u3v4 + u4v3 0 u1v4 − u4v1 −u1v3 + u3v1
u2v4 − u4v2 −u1v4 + u4v1 0 u1v2 − u2v1

−u2v3 + u3v2 u1v3 − u3v1 −u1v2 + u2v1 0

3

7

7

5

(1)

�

Consider now a pinhole camera whose optical center is
the pointC and the intrinsic parameters matrix is the ma-
trix K. The mirror surface is given by a quadricQ and is
positioned freely with relation to the camera. The 3D world
point P is imaged by the camera and its reflection point
over the mirror surface is the pointR. Figure 2 shows the
reflection process and the notations adopted.

Without loss of generality, assume that the camera cen-
ter, the quadric mirror and the 3D point to project into image
are known in mirror coordinates.
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Figure 2. The light rays reflection and imaging in a vision system.

The problem we tackle in this paper is how to find the
reflection pointR that projects the 3D pointP to the camera
centerC, in a noncentral configuration. This problem can
also be formulated as the search for the reflection point on a
curved surface where light is reflected through a particular
eye.

In the following section we review two different physical
principles that can be used to compute the reflection point.
In section 4 a new framework is then presented to compute
the reflection pointR. Experiments show that this new pro-
jection model framework has better performance and com-
puter efficiency than the other two methods: the Snell Law
and the Fermat Principle.

3. Geometry of the projection

The reflection through mirrors is a well studied physical
phenomenon and is explained by the Snell Law. Further-
more, the Fermat Principle states the behavior of the light
rays. Both two laws can be used separately and indepen-
dently from each other to compute the reflection pointR.
We now presented the way they solve forR.

3.1. Snell Law

By the Snell Law, the incident and reflected light rays
are at an equal angle in relation to the normal direction to
the mirror surface at the reflection pointr. Furthermore, the
same reflection pointr, the camera centerc and the point
to projectp define a plane that contains the normal vector.
Small caps are used to denote cartesian coordinates.

Figure 3 shows the reflection process wherevi is the in-
cident light ray,vr is the reflected light ray andn is the
normal vector to the mirror surface. The reflection law, in
cartesian coordinates, is then given by the equation:

vr = vi − 2(vi · n)n (2)

To express the reflected rayvr we use an additional
constraint to the equation, that all reflected light rays pass

R

nvr

vi

specular surface

Figure 3. Specular reflection

through the optical center of the camerac.

Considerx =
[

x y z
]T

the generic point on the mir-
ror surface. By substituting it in the quadratic equation,
there are up to two real roots and then the appropriate one
must be chosen. Since we are considering the mirror surface
equation to be known, additional information about the mir-
ror physical restriction must be available (upside or down-
side sheet for a two-sheets hyperbolic mirror, or the north or
south hemisphere for a spherical mirror, for example). This
information should be enough for the disambiguation be-
tween the two real roots. If, however, the two roots induce
two valid points, the disambiguation between them is de-
cided by the smaller value of the total distance between the
3D point and the camera optical axis, passing by the mirror
surface (distance fromp to r plus the distance fromr to c).

Since we know the camera centerc and the 3D pointp,
equation (2) can be used in the form:

c− r

‖c− r‖ =
r− p

‖r− p‖ − 2

(

r− p

‖r− p‖
T

· n
)

n (3)

wheren is the normal vector to the surface at the reflection
point. Its computation is straightforward.

Equation (3) is not explicit in the reflection pointr. It
is easy to solve forr but computationally hard due to all
nonlinearities introduced by the norms (all incident and re-
flected light rays have unit norm) and by the normal vector.

The easiest way to solve it is by iterating a nonlinear
multidimension minimization algorithm that iterates over
the pair of coordinates(x, y), solve forz and computes the
cost function as the deviation from the Snell equation 3. The
minimum should be found at the wanted reflection pointR.

3.2. Fermat Principle

The reflection point can also be calculated using the Fer-
mat principle. This principle states that the light always
takes the quickest path. So the reflection point is the one
that minimizes the distance between the 3D pointp and the



camera centerc. Notice that for the order of magnitude of
these systems, no perturbation in the space-time exists and
so the quickest path is also the shortest one.

Since we also know the quadric mirror parameters, it is
possible to express one of the coordinates as function of the
other two. We opt to expressz in relation tox andy. This
is done to incorporate the mirror restriction in the equation
of Fermat principle. As used in the case of the Snell Law,
the coordinates of the reflection point are then expressed in
cartesian coordinates byr =

[

rx ry rz

]

, where the third
coordinate is given by the following equation:

rz = − 1

q33

(q13rx + q23ry + q34)±
1

2q33

√
D (4)

where the discriminant is given by:

D = (2q13rx + 2q23ry + 2q34)
2
−

− 4q33

`

q11r
2

x + q22r
2

y + 2q12rxry + 2q14rx + 2q24ry + q44

´

(5)

and the appropriate root must be chosen in the same way as
stated for the Snell Law.

The distances betweenr andc and betweenr andp can
now be calculated and their sum minimized. The total dis-
tance is then given by:

dlightpath =
√

(rx − cx)2 + (ry − cy)2 + (rz − cz)2+

+
√

(rx − px)2 + (ry − py)2 + (rz − pz)2

(6)

andrz is given by expression (5).
Expression (6) can be analytically minimized by any

known method. The expressions obtained are nonlinear and
implicit in the coordinates of the reflection point. It still
needs, however, a nonlinear multidimensional minimization
method to compute numerically the solution.

In the following section we present a new framework for
the computation of the reflection point that reduces the di-
mensionality of the problem and enhances the computation
efficiency of the search forR.

4. New projection model - QI method

From equation (3) and (6) we see that both the Snell Law
and the Fermat Principle solve the problem of the reflection
point. The solution is however, implicit, nonlinear, multidi-
mensional, often unstable and computationally demanding.

In this section we present a projection model that can be
applied to noncentral catadioptric vision systems composed
by a quadric mirror and a perspective camera. The camera
intrinsic parameters, the quadric and the pose of the camera

in relation to the mirror are assumed to be known. Homo-
geneous coordinates are used rather than Cartesian.

The first step to solve the problem is to characterize the
reflection point.

4.1. Restrictions imposed on the reflection point

R is the reflection point on the mirror surface that
projects the 3D pointP into the image plane passing
through the camera centerC. For such point the following
three restrictions must be imposed:

1. RTQR = 0 −→ the point is on the quadric of the
mirror surface.

2. RTSR = 0 −→ the point is on the quadric given by
S = MTQ∗

∞
Q + QTQ∗

∞
M (proposition 2).

Proposition 2 The reflection pointR on a quadric
mirror Q, reflecting a 3D world pointP through the
point C, is on the quadric surfaceS, given byS =
MTQ∗

∞
Q + QTQ∗

∞
M, whereQ∗

∞
is the absolute

dual quadric, the4 × 4 matrix M is given by expres-
sion (1) and the planeΠB is defined by the 3D world
point P, the camera optical centerC and the reflec-
tion pointR itself. The reflection pointR is such that
ΠB = MR.

Proof:

Let us consider two concurrent planes:ΠA andΠB.
ΠA is the tangent plane to the quadricQ at the re-
flection pointR. Its representation is given byΠA =
QR.

The planeΠB is the plane defined by three points: the
camera optical centerC, the 3D pointP and the re-
flection pointR on the mirror surface. As showed in
section 2 the plane coordinates vector can be defined
by a linear equation in the reflected pointR expressed
by ΠB = M(P,C) ·R = MR (see equation (1)).

Given two planes with coordinates expressed byΠA

andΠB, the angle between them is given by its cosine
expressed by equation (7), whereQ∗

∞
is the absolute

dual quadric.

cosθ =
ΠA

TQ∗

∞
ΠB

√

(ΠA
T
Q∗

∞
ΠA)(ΠB

T
Q∗

∞
ΠB)

(7)

Since the normal to the quadric is perpendicular to the
tangent plane and must be on the plane defined by the
three pointsC, P andR, then the two planes,ΠA and
ΠB, must be perpendicular. The angle between two
planes is given by equation (7).



Sinceθ = π/2 and substituting equations of the planes
ΠA andΠB into equation (7) it yields equation (8)
which restricts the pointR to be on a quadric surface
given byS = MTQ∗

∞
Q.

ΠA
TQ∗

∞
ΠB = 0⇔ RTQTQ∗

∞
MR = 0⇔

⇔ RTMTQ∗

∞
QR = 0 (8)

Notice that matrixS is not symmetric as the generic
quadric matrix. However, without loss of generality,
matrix S can be substituted by another matrix whose
entries are related bySij ← 0.5Sij + 0.5Sji or since
the quadric matrix is defined up to a scale factor, we
obtain a symmetric matrix by addingS to its trans-
pose. The quadricS can then be computed asS =
MTQ∗

∞
Q + QTQ∗

∞
M.

With this change the quadric remains the same and its
representing matrix becomes symmetric.

�

3. The incidence and reflected angles are equal or the sum
of distances to the 3D point and to the optical center of
the camera is a minimum.

This third restriction imposes the choice of the reflec-
tion point on the subspace derived by the previous two
constraints. For this particular choice of the reflection
point one can use a reasoning based on one of the phys-
ical laws: the Snell Law or the Fermat Principle.

If the Snell Law reasoning is used, for a given point on
the mirror surface, the normal vector should make an
equal angle with both the incident and reflected rays.
This computation is straightforward and the normal
vector can be computed using the coordinates of the
tangent plane to the quadric surface at the reflection
pointR such thatΠN = QR. As the normal vector is
only the direction of the normal plane, its coordinates
are the first three plane coordinates normalized by its
norm.

The reflection point where incident and reflected rays
are equal is then the solution of the following expres-
sion:

acos
(

(c− r)T · n
)

= acos
(

(p− r)T · n
)

(9)

The alternative formulation of this third restriction is
by using the Fermat Principle reasoning, that is, the
total distance travelled by the light from the 3D point
to the camera passing by the reflection pointR must be
minimized. This restriction is expressed by equation 6.

Both formulations of third restriction can be used.
We observed in experiments that the reasoning based
on the Fermat Principle has better performance while
maintaining the accuracy.

The three restrictions above can then be used to compute
the reflection point on the mirror surface.

4.2. Computing the reflection pointR

Given the three constraints imposed to the reflection
pointR, the problem is now how to find that point. Its ex-
plicit closed form computation is however still not possible.
The first and second constraints are much similar since they
restrict the pointR to be on quadricQ (constraint (1)) and
to be also on quadricS (constraint (2)). This is the problem
of finding the intersection of those two quadrics (a quartic
in space). The third restriction constrains the point so that
the incident and reflection angles are equal (Snell Law rea-
soning) or alternatively so that the total distance travelled by
the light is minimum (Fermat Principle reasoning) and thus
point R must be located on the intersection curve where
third restriction is met.

The general method for computing an explicit paramet-
ric representation of the intersection between two quadrics
is due to Joshua Levin [9, 10]. However, the parametric rep-
resentation of this method is hard to compute and is less re-
liable due to the high number of irrational numbers needed.
Dupont et al. [3, 8] presented a modification of the Levin
method to intersect quadrics with optimal number of irra-
tionals, demonstrating that this alternative method is much
more accurate than the original one.

The parametric curve given by the intersection algorithm
is a function of only one parameter, sayλ. Let us represent
the parameterized curve by the4×1 vectorX(λ). Although
nonlinear, the curve can be searched for the point where in-
cident and reflected angles are equal, that is, where equation
(9) holds or where the total distance travelled by the ligh is
minimum. Let us callλ0 to the value of the parameter where
restriction 3 is met. The resulting reflection point is given
by R = X(λ0). Notice that for non-ruled quadric mirrors
equation restriction 3 has only one solution.

This method to find the reflection pointR on a mirror
surface that projects a 3D world pointP to the direction
of a particular pointC presents a major advantage over the
method of using explicitly the Euclidean expressions of the
mirror either using the Snell Law (equation (3)) or the Fer-
mat Principle (equation (6)). This advantage is the fact that,
once intersected the quadricsQ andS, the solution is given
by a nonlinear equation in only one parameter. This is im-
portant for the accuracy of the solution and also to the com-
putational efficiency of the method since the intersection of
two quadrics can be computed by a non iterative method
(see [3, 8] for details).



5. Discussion

The quadric surfaceS is analytically computed and no
geometrical interpretation exists for it. It is, however, im-
portant to understand the type of quadric it may be in order
to enhance the performance of the intersection computation
and even to characterize the intersection with the mirror: a
quartic curve in space.

SinceS is given byS = MTQ∗

∞
Q + QTQ∗

∞
M, the

explicit expressions ofM, Q∗

∞
andQ can be replaced in the

equation then yielding explicit expressions for the matrixS.
Notice that we consider the reference system to be placed
at the origin of the mirror reference system and make no
assumption on their relative orientation.

The general non-ruled quadric that express common mir-
rors is thus given by:

Q =









q11 0 0 0
0 q22 0 0
0 0 q33 q34

0 0 q34 q44









(10)

where for differentq11, q22, q33, q34 andq44 we may have
hyperbolic (of two sheets), parabolic or elliptic mirrors,in-
cluding spheres.

The projection framework presented in the previous sec-
tion can also be used with other types of quadric mirrors,
such as cones, planes and all other, since their equations
are for general quadrics. In this section we, however, dis-
cuss only the most representative mirror types - full rank
quadrics.

Expanding the equation ofS, one can express the upper
left 3× 3 sub-matrix ofS by the following equation:

Su =

2

4

0 m12 (q11 − q22) m13 (q11 − q33)
m12 (q11 − q22) 0 m23 (q22 − q33)
m13 (q11 − q33) m23 (q22 − q33) 0

3

5

(11)
wheremij andqij and the elements in thei− th row and
j − th column of the matricesM andQ respectively.

As it is well known the quadric is uniquely characterized
by the rank ofS andSu and the signal of the determinant
of S. Three particular cases are then analyzed in terms of
S, in order to characterize the quadric intersection.

Rotationally symmetric mirrors

Rotationally symmetric mirrors are the most important sub-
class of mirrors since they are the most common ones in
practice, due to their relative ease to manufacture. For this
kind of mirrors, whose symmetry is around the z-axis, one
haveq11 = q22 and substituting it in equation (11) one ob-
tains the following expression:

Su =

2

4

0 0 m13 (q11 − q33)
0 0 m23 (q11 − q33)

m13 (q11 − q33) m23 (q11 − q33) 0

3

5

(12)

Thus, the rank ofS andSu are in this case 4 and 2 re-
spectively. Computing the determinant of the quadricS we
achievedet(S) = q2

11
(m14m23 −m13m24)

2 (q33 − q11)
2

which is always positive. We can see in [2] that the only
quadric that matches these constraints is the hyperbolic
paraboloid.

We conclude that for rotationally symmetric mirrors
around the z-axis the quadricS is always a hyperbolic
paraboloid with inertia(2, 2).

Spherical mirrors

Spherical mirrors are special rotationally symmetric mirrors
that are often used in practice, in robotics applications, com-
puter vision, virtual reality in computer graphics and many
others. Thus, they are important to study.

Observing equation (12) it can be easily seen thatSu

becomes a matrix of zeros for a spherical mirror where
q11 = q33. The quadricS is, in this case, given by:

S =









0 0 0 m14

0 0 0 m24

0 0 0 m34

m14 m24 m34 0









(13)

representing a plane with equationm14x+m24y+m34z =
0 with inertia(1, 1). This plane pass on the origin of coordi-
nates. Notice that in the case of spherical mirrors this result
was already expected since any normal plane to the mirror
is radial and since the plane that contains the pointsP, C

andR must also contains the normal vector to the quadric
at the reflection point (Snell Law) and consequently must
pass in the origin. The case of spherical mirrors can be used
to help in the geometrical interpretation of quadricS.

Aligned mirrors with the camera optical axis

Another special configuration that is commonly used for vi-
sual systems is the one where the camera axis is aligned
with the symmetry axis of the rotationally symmetric mir-
ror. In this case the camera centerC is of the formC =
[

0 0 c3 1
]

. Substituting it in the equation of the ma-
trix M and then in the equation of the quadricS, it yields:

S =









0 0 p2Γ1 p2Γ2

0 0 −p1Γ1 −p1Γ2

p2Γ1 −p1Γ1 0 0
p2Γ2 −p1Γ2 0 0









(14)



Figure 4. Intersection quartic curve of quadricsQ andS in black
upon the quadric mirror surface.

whereΓ1 = q33 − q11, Γ2 = c3q11 + q34 and wherepi

represents thei− th coordinate of the pointP.
Observing the expression of the quadricS one can easily

conclude that its rank is 2 as well as the rank of its sub-
matrixSu. The quadricS is then, for cameras aligned with
the symmetry axis of a rotationally symmetric mirror, two
intersecting planes that pass in the origin and has equation
(p2x− p1y) · (Γ1z + Γ2) = 0. The planes parameterized
are given byz = −Γ2

Γ1
andp2x− p1y = 0, where the right-

most plane passes at the origin and contains the z-axis. This
plane also passes at the pointP as expected. It is then the
plane defined by the symmetry axis and the point to project.

6. Experiments

In this section we perform some experiments to prove
the usefulness of our framework to project light through a
mirror to a vision device, mainly in terms of performance.

For visualization purposes we first project one point on a
typical configuration: a rotationally symmetric hyperbolic
mirror not aligned with the camera optical axis. Figure 4
shows the mirror and on its surface the quartic curve (inter-
section curve with the quadricS) in a rotationally symmet-
ric hyperbolic mirror not aligned with the camera axis.

One can observe from figure 4 that the intersection of the
mirror with the quadricS gives smooth curves on the mirror
surface allowing a much more stable and quick search for
the reflection pointR.

Concerning performance evaluation, we projected to the
image a regular points grid (notice that figure 1 is an ex-
ample of the reflection points of such a grid on the mir-
ror surface) of 1600 points and measured the evaluation
time for each point in three different mirrors: hyperboloid,
paraboloid and sphere. All three configurations where non-
central, guaranteed by off-axis positioning of the camera
optical center. This test was repeated 14 times for different
values of imposed pixel accuracy (reprojection error) where
the accuracy in relation to ground truth was achieved by the
following manner: we started from image points and back
projected them using optics. We then intersected all back-
projected rays with a plane. This produced a regular grid
of 3D points whose true image projections were known to
be the initial image points. All points were projected to the
image using our method (let us say QI method), the Snell

Figure 5. Process used to measure the performance of the three
methods in relation to the accuracy. The dashed circles represent
the vicinity of the ground truth point that the QI, Snell and Fermat
methods must achieve to stop the searching algorithm.
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Figure 6. Performance versus accuracy in a hyperbolic mirror. The
accuracy is expressed as the maximum reprojection error in pixels
and the performance is the projection median time in seconds.

Law and the Fermat Principle. The nonlinear minimization
algorithm was then iterated until the reprojection error was
smaller than the imposed accuracy error (see figure 5 to vi-
sualize the process). The tests were performed on a Pentium
Dual Core 2.4Ghz microprocessor running Matlab.

Figures 6, 7 and 8 plot the median values of the evalua-
tion time for a point on a hyperbolic, parabolic and spheri-
cal mirror. The standard deviations of time measures were
computed and they are, for all tests, of an order of mag-
nitude lower than the median time which suggest that all
points are projected in about the same elapsed time.

As can be observed from the results, the QI method that
we present in this paper has always the best performance
for a given accuracy, for all types of mirrors. The QI perfor-
mance is in the worst case two times the Snell performance
but can be up to six times the performance of Snell and Fer-
mat methods. These results clearly prove that our method
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Figure 7. Performance versus accuracy in a spherical mirror. The
accuracy is expressed as the maximum reprojection error in pixels
and the performance is the projection median time in seconds.
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Figure 8. Performance versus accuracy in a parabolic mirror. The
accuracy is expressed as the maximum reprojection error in pixels
and the performance is the projection median time in seconds.

has better performance when compared with the other two.

7. Conclusion

We present in this paper a novel method to project 3D
points through quadric mirrors, considering a noncentral
vision system for which there are no explicit projection
model. The alternative methods to solve this problem are
the classical Snell Law and Fermat Principle where the re-
flection point is searched in a multidimensional space.

Our presented method, however, derives an unidimen-
sional space where the reflection point can be searched for,
the intersection of two quadrics. Some special configura-
tions of this quartic curve are studied for a geometrical in-
terpretation and also to reduce the solution complexity.

Experiments show that the performance of our method
(QI) is much higher than the performance of the classical
methods. This framework is thus suitable to use in com-
puter vision for reprojection error based calibration meth-

ods or in computer graphics for rendering, illumination, vi-
sualization, augmented reality and many other applications.

In the future we want to extend the experiments to other
types of mirrors, particularly to non parametric mirrors. We
also want to study some other special configurations and de-
rive simplified expressions for the intersection curve where
the reflection point may be searched for (as function of the
system calibration parameters). After this work to extend
the framework we intend to migrate to a GPU in order to
speed up the algorithm which has strong parallelization po-
tential. Another direction to pursue is the application of this
framework to computer vision and graphics problems.
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